بررسی چارچوب‌های آلی- فلزی در گوگردزدایی جذبی

نوع مقاله : ترویجی

نویسندگان

1 کارشناسی ارشد مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

2 دکترا، استاد مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

3 دکترا، مرکز علوم و فناوری نانو، پژوهشگاه صنعت نفت، تهران، ایران

4 دکترا، استادیار مهندسی شیمی، پژوهشکده توسعه فناوری‌های کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

بررسی روش‌هایی برای حذف ترکیبات گوگردی از سوخت، از موضوعات مهم و حیاتی در صنعت نفت است. گوگردزدایی جذبی به دلیل مصرف پایین انرژی، به عنوان یکی از امیدوارکننده‌ترین روش‌های گوگردزدایی شناخته شده است. چارچوب‌های آلی-فلزی خانواده جدیدی از مواد متخلخل هستند که ساختار و عملکرد قابل تنظیم دارند. سطح ویژه و تخلخل بالا، اندازه منافذ قابل تنظیم و از همه مهم‌تر گزینش پذیری بالای چارچوب‌های آلی-فلزی نسبت به ترکیبات گوگردی، از جمله ویژگی‌هایی هستند که این جاذب را نسبت به سایر جاذب‌ها متمایز کرده و به دلیل برهمکنش مناسب با ترکیبات گوگردی ظرفیت جذب بسیار بالاتری را از جاذب‌هایی همچون اکسید فلزات، زئولیت‌ها و ترکیبات کربنی از خود نشان می‌دهند. پای کمپلکس، برهمکنش اسید و باز، برهمکنش مستقیم فلز -اتم گوگرد و نیروهای واندروالسی، مکانیسم‌های غالب فرآیند گوگردزدایی جذبی به روی چارچوب‌های آلی-فلزی هستند. در این مطالعه، کاربرد و مکانیزم  چارچوب‌های آلی-فلزی  در گوگردزدایی جذبی بررسی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Metal Organic Frameworks in Adsorptive Desulfurization

نویسندگان [English]

  • mahya ghasa 1
  • farhad khorasheh 2
  • zeinab hajjar 3
  • Saeed Soltanali 4
1 M.Sc. Student in Chemical and Petroleum Engineering, Sharif University of Technology
2 Professor in Chemical and Petroleum Engineering, Sharif University of Technology
3 PhD in Nanotechnologhy Research Center, Research Institute of Petroleum Industry (RIPI)
4 Assistant Professor in Catalysis Technologies Development, Research Institute of Petroleum Industry
چکیده [English]

Investigating methods to remove sulfur compounds from fuel is one of the most important and vital issues in the oil industry. Adsorptive desulfurization is known as one of the most promising desulfurization methods due to its low energy consumption. Metal-organic frameworks are a new family of porous materials with tunable structure and function. High specific surface area and porosity, adjustable pore size, and most importantly, high selectivity of metal-organic frameworks towards sulfur compounds, are among the features that distinguish this adsorbent from other adsorbents such as metal oxides, zeolites and carbon compounds, and they show higher adsorption capacities than other adsorbents due to the proper interaction with sulfur compounds. The dominant mechanisms in the adsorptive desulfurization process over metal-organic frameworks are π complexation, acid-base interaction, direct sulfur-metal interaction, and van der Waals forces. In this study, the application and mechanisms of MOF in adsorptive desulfurization was investigated.

کلیدواژه‌ها [English]

  • Metal-Organic Framework
  • Adsorptive Desulfurization
  • Sulfur Compounds
  • Adsorptive Mechanism
[1]       R. Colvile, E. J. Hutchinson, J. Mindell, and R. Warren, "The transport sector as a source of air pollution," Atmospheric environment, vol. 35, no. 9, pp. 1537-1565, 2001.
[2]       B. R. Fox et al., "Enhanced oxidative desulfurization in a film-shear reactor," Fuel, vol. 156, pp. 142-147, 2015.
[3]       W. H. Organization, Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, 2006.
[4]       K. Liu, C. Song, and V. Subramani, Hydrogen and syngas production and purification technologies. John Wiley & Sons, 2010.
[5]       B. Saha, S. Vedachalam, and A. K. Dalai, "Review on recent advances in adsorptive desulfurization," Fuel Processing Technology, vol. 214, p. 106685, 2021.
[6]       M. H. Ibrahim, M. Hayyan, M. A. Hashim, and A. Hayyan, "The role of ionic liquids in desulfurization of fuels: A review," Renewable and Sustainable Energy Reviews, vol. 76, pp. 1534-1549, 2017.
[7]       R. Samanta and A. P. Antonchick, "Palladium‐Catalyzed Double C H Activation Directed by Sulfoxides in the Synthesis of Dibenzothiophenes," Angewandte Chemie International Edition, vol. 50, no. 22, pp. 5217-5220, 2011.
[8]       J. Gao et al., "Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol," Fuel, vol. 233, pp. 704-713, 2018.
[9]       K. A. Gray, G. T. Mrachko, and C. H. Squires, "Biodesulfurization of fossil fuels," Current opinion in microbiology, vol. 6, no. 3, pp. 229-235, 2003.
[10] J. M. Campos‐Martin, M. d. C. Capel‐Sanchez, P. Perez‐Presas, and J. Fierro, "Oxidative processes of desulfurization of liquid fuels," Journal of Chemical Technology & Biotechnology, vol. 85, no. 7, pp. 879-890, 2010.
[11] S. A. Lateef, O. O. Ajumobi, and S. A. Onaizi, "Enzymatic desulfurization of crude oil and its fractions: A mini review on the recent progresses and challenges," Arabian Journal for Science and Engineering, vol. 44, no. 6, pp. 5181-5193, 2019.
[12] A. Fihri, R. Mahfouz, A. Shahrani, I. Taie, and G. Alabedi, "Pervaporative desulfurization of gasoline: a review," Chemical Engineering and Processing-Process Intensification, vol. 107, pp. 94-105, 2016.
[13] K. Blumberg, M. Walsh, and C. Pera, "Low sulfur gasoline and diesel, the key to lower vehicle emissions. The International Council on Clean Transportation, 66pp," ed, 2003.
[14] X.-H. Bu, M. J. Zaworotko, and Z. Zhang, Metal-Organic Framework: From Design to Applications. Springer, 2020.
[15] I. Ahmed and S. H. Jhung, "Adsorptive desulfurization and denitrogenation using metal-organic frameworks," Journal of Hazardous materials, vol. 301, pp. 259-276, 2016.
[16] J. Wang and X. Guo, "Adsorption kinetic models: Physical meanings, applications, and solving methods," Journal of Hazardous materials, vol. 390, p. 122156, 2020.
[17] I. Uzun, "Kinetics of the adsorption of reactive dyes by chitosan," Dyes and pigments, vol. 70, no. 2, pp. 76-83, 2006.
[18] Y.-S. Ho and G. McKay, "Pseudo-second order model for sorption processes," Process biochemistry, vol. 34, no. 5, pp. 451-465, 1999.
[19] W. J. Weber Jr and J. C. Morris, "Kinetics of adsorption on carbon from solution," Journal of the sanitary engineering division, vol. 89, no. 2, pp. 31-59, 1963.
[20] L. L. Mguni, Y. Yao, J. Ren, X. Liu, and D. Hildebrandt, "Modulated Synthesis of a Novel Nickel-Based Metal–Organic Framework Composite Material for the Adsorptive Desulfurization of Liquid Fuels," Industrial & Engineering Chemistry Research, vol. 60, no. 30, pp. 10997-11008, 2021.
[21] K. X. Lee and J. A. Valla, "Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review," Reaction Chemistry & Engineering, vol. 4, no. 8, pp. 1357-1386, 2019.
[22] R. T. Yang, A. J. Hernández-Maldonado, and F. H. Yang, "Desulfurization of transportation fuels with zeolites under ambient conditions," Science, vol. 301, no. 5629, pp. 79-81, 2003.
[23] M. Maes et al., "Selective removal of N‐heterocyclic aromatic contaminants from fuels by Lewis acidic metal–organic frameworks," Angewandte Chemie International Edition, vol. 50, no. 18, pp. 4210-4214, 2011.
[24] R. Palkovits, K. Tajvidi, A. M. Ruppert, and J. Procelewska, "Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols," Chemical Communications, vol. 47, no. 1, pp. 576-578, 2011.
[25] J. Juan-Alcaniz, J. Gascon, and F. Kapteijn, "Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives," Journal of materials chemistry, vol. 22, no. 20, pp. 10102-10118, 2012.
[26] N. A. Khan and S. H. Jhung, "Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid," Fuel processing technology, vol. 100, pp. 49-54, 2012.
[27] D. Y. Hong, Y. K. Hwang, C. Serre, G. Ferey, and J. S. Chang, "Porous chromium terephthalate MIL‐101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis," Advanced Functional Materials, vol. 19, no. 10, pp. 1537-1552, 2009.
[28] B. Van de Voorde et al., "N/S-heterocyclic contaminant removal from fuels by the mesoporous metal–organic framework MIL-100: The role of the metal ion," Journal of the American Chemical Society, vol. 135, no. 26, pp. 9849-9856, 2013.
[29] J. W. Jun, M. Tong, B. K. Jung, Z. Hasan, C. Zhong, and S. H. Jhung, "Effect of central metal ions of analogous metal–organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification," Chemistry–A European Journal, vol. 21, no. 1, pp. 347-354, 2015.
[30] I. Ahmed, N. A. Khan, and S. H. Jhung, "Graphite oxide/metal–organic framework (MIL-101): remarkable performance in the adsorptive denitrogenation of model fuels," Inorganic chemistry, vol. 52, no. 24, pp. 14155-14161, 2013.
[31] M. Maes et al., "Selective removal of N‐heterocyclic aromatic contaminants from fuels by Lewis acidic metal–organic frameworks," Angewandte Chemie, vol. 123, no. 18, pp. 4296-4300, 2011.
[32] M. Wdowin, M. Franus, R. Panek, L. Badura, and W. Franus, "The conversion technology of fly ash into zeolites," Clean Technologies and Environmental Policy, vol. 16, no. 6, pp. 1217-1223, 2014.
[33] R. Dehghan and M. Anbia, "Zeolites for adsorptive desulfurization from fuels: A review," Fuel Processing Technology, vol. 167, pp. 99-116, 2017.
[34] S. Wang and Y. Peng, "Natural zeolites as effective adsorbents in water and wastewater treatment," Chemical engineering journal, vol. 156, no. 1, pp. 11-24, 2010.
[35] R. Mahmoudi and C. Falamaki, "Ni2+-ion-exchanged dealuminated clinoptilolite: A superior adsorbent for deep desulfurization," Fuel, vol. 173, pp. 277-284, 2016.
[36] L. Zhu et al., "Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas," Journal of Natural Gas Science and Engineering, vol. 69, p. 102941, 2019.
[37] J. Rui, F. Liu, R. Wang, Y. Lu, and X. Yang, "Adsorptive desulfurization of model gasoline by using different Zn sources exchanged NaY zeolites," Molecules, vol. 22, no. 2, p. 305, 2017.
[38] V. M. Bhandari, C. H. Ko, J. G. Park, S.-S. Han, S.-H. Cho, and J.-N. Kim, "Desulfurization of diesel using ion-exchanged zeolites," Chemical Engineering Science, vol. 61, no. 8, pp. 2599-2608, 2006.
[39] J. Liao, Y. Wang, L. Chang, and W. Bao, "Preparation of M/γ-Al₂O₃ sorbents and their desulfurization performance in hydrocarbons," 2015.
[40] I. Ghouma et al., "The potential of activated carbon made of agro-industrial residues in NOx immissions abatement," Energies, vol. 10, no. 10, p. 1508, 2017.
[41] X. Han, H. Lin, and Y. Zheng, "Understanding capacity loss of activated carbons in the adsorption and regeneration process for denitrogenation and desulfurization of diesel fuels," Separation and Purification Technology, vol. 133, pp. 194-203, 2014.
[42] L. V. Baia, W. C. Souza, R. J. De Souza, C. u. O. Veloso, S. S. Chiaro, and M. A. G. Figueiredo, "Removal of sulfur and nitrogen compounds from diesel oil by adsorption using clays as adsorbents," Energy & Fuels, vol. 31, no. 11, pp. 11731-11742, 2017.
[43] Q.-y. Wang, Z.-l. Liu, H.-b. Zou, Z.-h. Zhao, and X.-c. Wei, "Effect of surfactant modification on the desulfurization performance of Zn/Ti-PILCs adsorbent," Journal of Fuel Chemistry and Technology, vol. 39, no. 3, pp. 203-206, 2011.
[44] J. W. Ha, T. Japhe, T. Demeke, B. Moreno, and A. E. Navarro, "On the removal and desorption of sulfur compounds from model fuels with modified clays," Clean Technologies, vol. 1, no. 1, pp. 58-69, 2018.
[45] F. Habimana, D. Shi, and S. Ji, "Synthesis of Cu-BTC/Mt composites porous materials and their performance in adsorptive desulfurization process," Applied Clay Science, vol. 152, pp. 303-310, 2018.
[46] A. Vinu and K. Ariga, "New ideas for mesoporous materials," Advanced Porous Materials, vol. 1, no. 1, pp. 63-71, 2013.
[47] H.-C. Zhou, J. R. Long, and O. M. Yaghi, "Introduction to metal–organic frameworks,"  vol. 112, ed: ACS Publications, 2012, pp. 673-674.
[48] S. T. Meek, J. A. Greathouse, and M. D. Allendorf, "Metal‐organic frameworks: A rapidly growing class of versatile nanoporous materials," Advanced materials, vol. 23, no. 2, pp. 249-267, 2011.
[49] N. A. Khan and S. H. Jhung, "Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel," Journal of hazardous materials, vol. 260, pp. 1050-1056, 2013.
[50] K. A. Cychosz, A. G. Wong-Foy, and A. J. Matzger, "Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds," Journal of the American Chemical Society, vol. 130, no. 22, pp. 6938-6939, 2008.
[51] N. A. Khan, J. W. Jun, J. H. Jeong, and S. H. Jhung, "Remarkable adsorptive performance of a metal–organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene," Chemical Communications, vol. 47, no. 4, pp. 1306-1308, 2011.
[52] W. Xu, G. Li, W. Li, and H. Zhang, "Facile room temperature synthesis of metal–organic frameworks from newly synthesized copper/zinc hydroxide and their application in adsorptive desulfurization," RSC advances, vol. 6, no. 44, pp. 37530-37534, 2016.
[53] X. Ma, H. Liu, W. Li, S. Peng, and Y. Chen, "Reactive adsorption of low concentration methyl mercaptan on a Cu-based MOF with controllable size and shape," RSC advances, vol. 6, no. 99, pp. 96997-97003, 2016.
[54] F. Tian, Z. Fu, H. Zhang, J. Zhang, Y. Chen, and C. Jia, "Thiophene adsorption onto metal–organic framework HKUST-1 in the presence of toluene and cyclohexene," Fuel, vol. 158, pp. 200-206, 2015.
[55] A. López-Magano, A. Jiménez-Almarza, J. Alemán, and R. Mas-Ballesté, "Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations," Catalysts, vol. 10, no. 7, p. 720, 2020.
[56] Y. Jin et al., "Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material," Inorganica Chimica Acta, vol. 503, p. 119412, 2020.
[57] L. Han, J. Zhang, Y. Mao, W. Zhou, W. Xu, and Y. Sun, "Facile and green synthesis of MIL-53 (Cr) and its excellent adsorptive desulfurization performance," Industrial & Engineering Chemistry Research, vol. 58, no. 34, pp. 15489-15496, 2019.
[58] M. Bagheri, M. Y. Masoomi, and A. Morsali, "High organic sulfur removal performance of a cobalt based metal-organic framework," Journal of hazardous materials, vol. 331, pp. 142-149, 2017.
[59] L. Xiang, W. Jingyan, L. Qingyuan, S. JIANG, T. ZHANG, and J. Shengfu, "Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization," Journal of Rare Earths, vol. 32, no. 2, pp. 189-194, 2014.
[60] N. A. Khan, Z. Hasan, and S. H. Jhung, "Ionic liquids supported on metal‐organic frameworks: remarkable adsorbents for adsorptive desulfurization," Chemistry–A European Journal, vol. 20, no. 2, pp. 376-380, 2014.
[61] X.-F. Zhang et al., "Adsorptive desulfurization from the model fuels by functionalized UiO-66 (Zr)," Fuel, vol. 234, pp. 256-262, 2018.
[62] T. Wang, X. Li, W. Dai, Y. Fang, and H. Huang, "Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks," Journal of Materials Chemistry A, vol. 3, no. 42, pp. 21044-21050, 2015.
[63] X. Guan, Y. Wang, and W. Cai, "A composite metal-organic framework material with high selective adsorption for dibenzothiophene," Chinese Chemical Letters, vol. 30, no. 6, pp. 1310-1314, 2019.
[64] P. Tan et al., "Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation," Journal of hazardous materials, vol. 321, pp. 344-352, 2017.
[65] N. A. Khan and S. H. Jhung, "Scandium-triflate/metal–organic frameworks: remarkable adsorbents for desulfurization and denitrogenation," Inorganic Chemistry, vol. 54, no. 23, pp. 11498-11504, 2015.
[66] M. Chen et al., "Magnetic hybridized Fe3O4/HKUST-1 composite modified with graphite oxide to remove thiophene from model fuels," Petroleum Science and Technology, vol. 37, no. 22, pp. 2260-2268, 2019.
[67] T. Jin et al., "Promoting desulfurization capacity and separation efficiency simultaneously by the novel magnetic Fe 3 O 4@ PAA@ MOF-199," Rsc Advances, vol. 4, no. 79, pp. 41902-41909, 2014.
[68] Z. Zhao et al., "Confinement of microporous MOF-74 (Ni) within mesoporous γ-Al2O3 beads for excellent ultra-deep and selective adsorptive desulfurization performance," Fuel processing technology, vol. 176, pp. 276-282, 2018.
[69] N. A. Khan, B. N. Bhadra, and S. H. Jhung, "Heteropoly acid-loaded ionic liquid@ metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel," Chemical Engineering Journal, vol. 334, pp. 2215-2221, 2018.
[70] L. Ullah et al., "Highly efficient adsorption of benzothiophene from model fuel on a metal-organic framework modified with dodeca-tungstophosphoric acid," Chemical Engineering Journal, vol. 362, pp. 30-40, 2019.
[71] L. Wu et al., "A combined experimental/computational study on the adsorption of organosulfur compounds over metal–organic frameworks from fuels," Langmuir, vol. 30, no. 4, pp. 1080-1088, 2014.
[72] M. Huang et al., "A metal–organic framework with immobilized Ag (I) for highly efficient desulfurization of liquid fuels," Chemical communications, vol. 51, no. 61, pp. 12205-12207, 2015.
[73] L. Qin et al., "Highly dispersed HKUST-1 on milimeter-sized mesoporous γ-Al2O3 beads for highly effective adsorptive desulfurization," Industrial & Engineering Chemistry Research, vol. 55, no. 27, pp. 7249-7258, 2016.
[74] I. Ahmed, Z. Hasan, N. A. Khan, and S. H. Jhung, "Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs," Applied Catalysis B: Environmental, vol. 129, pp. 123-129, 2013.
[75] B. Van de Voorde, B. Bueken, J. Denayer, and D. De Vos, "Adsorptive separation on metal–organic frameworks in the liquid phase," Chemical Society Reviews, vol. 43, no. 16, pp. 5766-5788, 2014.
[76] H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, "The chemistry and applications of metal-organic frameworks," Science, vol. 341, no. 6149, p. 1230444, 2013.
[77] M. Xue et al., "New prototype isoreticular metal− organic framework Zn4O (FMA) 3 for Gas Storage," Inorganic chemistry, vol. 48, no. 11, pp. 4649-4651, 2009.
[78] O. K. Farha et al., "Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?," Journal of the American Chemical Society, vol. 134, no. 36, pp. 15016-15021, 2012.
[79] D. A. Giannakoudakis and T. J. Bandosz, "Graphite oxide nanocomposites for air stream desulfurization," in Composite Nanoadsorbents: Elsevier, 2019, pp. 1-24.
[80] M. Chen, Y. Ding, Y. Liu, N. Wang, B. Yang, and L. Ma, "Adsorptive desulfurization of thiophene from the model fuels onto graphite oxide/metal-organic framework composites," Petroleum Science and Technology, vol. 36, no. 2, pp. 141-147, 2018.
[81] M. Seredych and T. J. Bandosz, "Adsorption of dibenzothiophenes on activated carbons with copper and iron deposited on their surfaces," Fuel Processing Technology, vol. 91, no. 6, pp. 693-701, 2010.
[82] S. Kumar, V. C. Srivastava, and R. Badoni, "Studies on adsorptive desulfurization by zirconia based adsorbents," Fuel, vol. 90, no. 11, pp. 3209-3216, 2011.
[83] M. Ishaq, S. Sultan, I. Ahmad, H. Ullah, M. Yaseen, and A. Amir, "Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent," Journal of Saudi Chemical Society, vol. 21, no. 2, pp. 143-151, 2017.
[84] Y. Oyola, S. Vukovic, and S. Dai, "Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater," Dalton Transactions, vol. 45, no. 20, pp. 8532-8540, 2016.