مروری بر فرآیند گوگردزدایی جذبی از فرآورده‌های نفتی توسط جاذب‌های متخلخل کربنی

نوع مقاله : مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، مرکز تحقیقات کربن سبز، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران

2 دکتری/استادیار، مرکز تحقیقات کربن سبز، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

امروزه مشکلات فرایند گوگردزدایی هیدروژنی، منجر به  توسعه روش‌های نوین همچون گوگردزدایی جذبی (ADS)، استخراجی، اکسیداسیونی و... شده است برخلاف روش گوگردزدایی هیدروژنی، ADS بدون نیاز به هیدروژن گران‌قیمت و پرخطر و در شرایط عملیاتی (دما و فشار) پایین توانایی حذف ترکیب‌های گوگردی مقاوم نظیر DBT و مشتقات آن را دارد. در این مقاله، علاوه بر مقایسه روش‌های نوین گوگردزدایی، از بین جاذب‌های جامد مورد استفاده در فرایند ADS، به بررسی عملکرد  جاذب‌های متخلخل کربنی،  به دلیل  داشتن ویژگی‌های منحصربه‌فرد آن‌ها نظیر مساحت سطح و تخلخل زیاد، اصلاح آسان خواص فیزیکی - شیمیایی و هزینه تمام شده مقرون‌به‌صرفه و... پرداخته شده است. همچنین، برای درک بهتر فرایند، پارامترهای مؤثر فرایندی، سینتیک و ترمودینامیک و انواع مکانیسم‌های جذب در فرایند ADS توسط مواد کربنی بررسی و تحلیل شده است و نهایتاً، انواع روش‌های بازیابی جاذب‌های کربنی معرفی و چالش‌های پیشروی فرایند ADS اشاره شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review on Adsorptive Desulfurization of Petroleum Products by Porous Carbon Adsorbents

نویسندگان [English]

  • Ramin Sayyar 1
  • Reza Khoshbouy 2
1 M.Sc. Student, Green Carbon Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
2 Assistant Professor, Green Carbon Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
چکیده [English]

Today, the drawbacks of the hydrodesulfurization process have led to the development of new methods such as adsorptive desulfurization (ADS), extraction, oxidation, etc. Unlike the hydrodesulfurization method, ADS has the ability to remove resistant sulfur compounds such as DBT and its derivatives without the need for expensive and risky hydrogen and under low operating conditions (temperature and pressure). In this article, in addition to the comparison of modern desulfurization methods, among the solid adsorbents used in the ADS process, the performance of porous carbon adsorbents is investigated due to their unique characteristics such as high surface area and porosity, easy modification of physical-chemical properties and the cost is affordable and has been paid. Also, for a better understanding of the process, the effective process parameters, kinetics and thermodynamics and various adsorption mechanisms in the ADS process by carbon materials have been investigated. And finally, various methods of recovery of carbon adsorbents are introduced and the challenges of advancing the ADS process are mentioned.

کلیدواژه‌ها [English]

  • Desulfurization Methods
  • Adsorptive Desulfurization
  • Porous Carbon Materials
  • Petroleum products
  • Adsorption Mechanism
[1] J. R. Katzer, M. P. Ramage, A. V Sapre, "Petroleum refining: poised for profound changes", Chem. Eng. Prog., vol. 96, no. 7, pp. 41–51, 2000.
[2] J. G. Speight, The chemistry and technology of petroleum, CRC press, 2006.
[3] A. Demirbas, H. Alidrisi, M. A. Balubaid, "API gravity, sulfur content, and desulfurization of crude oil", Pet. Sci. Technol., vol. 33, no. 1, pp. 93–101, 2015.
[4] A. Rajendran, T. Cui, H. Fan, Z. Yang, J. Feng, W. Li, "A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment", J. Mater. Chem. A, vol. 8, no. 5, pp. 2246–2285, 2020.
[5] B. Saha, S. Vedachalam, A. K. Dalai, "Review on recent advances in adsorptive desulfurization", Fuel Process. Technol., vol. 214, pp. 106685, 2021.
[6] ی. قربانی، "بررسی روش های حذف ترکیبات گوگرددار از نفت خام", نشریه علمی فرآیند نو، جلد 8، شماره  43، صص. 39-19، سال 1392.
[7] I. V Babich , J. A. Moulijn, "Science and technology of novel processes for deep desulfurization of oil refinery streams: a review", Fuel, vol. 82, no. 6, pp. 607–631, 2003.
[8] R. Javadli , A. De Klerk, "Desulfurization of heavy oil", Appl. petrochemical Res., vol. 1, no. 1, pp. 3–19, 2012.
[9] M. Sharma, P. Sharma, J. N. Kim, "Solvent extraction of aromatic components from petroleum derived fuels: a perspective review", RSC Adv., vol. 3, no. 26, pp. 10103–10126, 2013.
[10] F. Boshagh, B. Mokhtarani, H. R. Mortaheb, "Effect of electrokinetics on biodesulfurization of the model oil by Rhodococcus erythropolis PTCC1767 and Bacillus subtilis DSMZ 3256", J. Hazard. Mater., vol. 280, pp. 781–787, 2014.
[11] D. Boniek, D. Figueiredo, A. F. B. dos Santos, M. A. de Resende Stoianoff, "Biodesulfurization: a mini review about the immediate search for the future technology", Clean Technol. Environ. Policy, vol. 17, no. 1, pp. 29–37, 2015.
[12] D. J. Monticello, "Biodesulfurization and the upgrading of petroleum distillates", Curr. Opin. Biotechnol., vol. 11, no. 6, pp. 540–546, 2000.
[13] S. Otsuki et al., "Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction", Energy & fuels, vol. 14, no. 6, pp. 1232–1239, 2000.
[14] A. Stanislaus, A. Marafi, M. S. Rana, "Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production", Catal. today, vol. 153, no. 1–2, pp. 1–68, 2010.
[15] J. Gao et al., "Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol", Fuel, vol. 233, pp. 704–713, 2018.
[16] J. H. Kim, X. Ma, A. Zhou, C. Song, "Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism", Catal. Today, vol. 111, no. 1–2, pp. 74–83, 2006.
[17] G. Blanco-Brieva, J. M. Campos-Martin, S. M. Al-Zahrani, J. L. G. Fierro, "Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents", Glob. Nest J, vol. 12, no. 3, pp. 296–304, 2010.
[18] V. C. Srivastava, "An evaluation of desulfurization technologies for sulfur removal from liquid fuels", Rsc Adv., vol. 2, no. 3, pp. 759–783, 2012.
[19] J. P. Nehlsen, Developing clean fuels: Novel techniques for desulfurization, Princeton University, 2006.
[20] F. Boshagh, B. Mokhtarani, H. Mortaheb, "Desulfurization Method of Liquid Fuel", Iranian Chemical Engineering Journal, vol. 15. pp. 104–125, 2016.
[21] S. A. Ganiyu , S. A. Lateef, "Review of adsorptive desulfurization process: Overview of the non-carbonaceous materials, mechanism and synthesis strategies", Fuel, vol. 294, p. 120273, 2021.
[22] E. Svinterikos, I. Zuburtikudis, M. Al-Marzouqi, "Carbon Nanomaterials for the Adsorptive Desulfurization of Fuels", Journal of Nanotechnology, vol. 2019. 2019. doi: 10.1155/2019/2809867.
[23] Tadda, M. A. and Ahsan, A. and Shitu, A. and ElSergany, M. and Arunkumar, T. and Jose, Bipin and Razzaque, M. Abdur and Nik Daud, N. N., A review on activated carbon: process, application and prospects. Journal of Advanced Civil Engineering Practice and Research, 2 (1). pp. 7-13, 2016.
[24]     م. م. س. شادکام، "مروری کوتاه بر روش های گوگردزدایی از سوخت با استفاده از جاذب­های کربنی و خاک"، پنجمین کنفرانس علوم و مهندسی جداسازی، 1401.
[25] S. A. Ganiyu, et al., "Boron-doped activated carbon as efficient and selective adsorbent for ultra-deep desulfurization of 4, 6-dimethyldibenzothiophene", Chem. Eng. J., vol. 321, pp. 651–661, 2017.
[26] S. S. Shah, et al., "Study on adsorptive capability of acid activated charcoal for desulphurization of model and commercial fuel oil samples", J. Environ. Chem. Eng., vol. 6, no. 4, pp. 4037–4043, 2018.
[27] A. B. Fadhil, H. N. Saeed, L. I. Saeed, "Polyethylene terephthalate waste‐derived activated carbon for adsorptive desulfurization of dibenzothiophene from model gasoline: Kinetics and isotherms evaluation", AsiaPacific J. Chem. Eng., vol. 16, no. 2, pp. e2594, 2021.
[28]     S. A. Ganiyu, et al., "Influence of aluminium impregnation on activated carbon for enhanced desulfurization of  DBT at ambient temperature: role of surface acidity and textural properties", Chem. Eng. J., vol. 303, pp. 489–500, 2016.
[29] G. I. Danmaliki , T. A. Saleh, "Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon", Chem. Eng. J., vol. 307, pp. 914–927, 2017.
[30] Y. A. Alhamed, H. S. Bamufleh, "Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2", Fuel, vol. 88, no. 1, pp. 87–94, 2009.
[31] S. S. Shah, I. Ahmad, W. Ahmad, "Adsorptive desulphurization study of liquid fuels using Tin (Sn) impregnated activated charcoal", J. Hazard. Mater., vol. 304, pp. 205–213, 2016.
[32] T. A. Saleh, S. A. Al-Hammadi, A. Tanimu, K. Alhooshani, "Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber", J. Colloid Interface Sci., vol. 513, pp. 779–787, 2018.
[33] K. Chen, W. Li, B. W. Biney, Z. Li, J. Shen, Z. Wang, "Evaluation of adsorptive desulfurization performance and economic applicability comparison of activated carbons prepared from various carbon sources", RSC Adv., vol. 10, no. 66, pp. 40329–40340, 2020.
[34] Y. A. Abd Al-Khodor, T. M. Albayati, "Adsorption desulfurization of actual heavy crude oil using activated carbon", Eng. Tech. J, vol. 38, pp. 1441–1453, 2020.
[35] D. Jha, et al., "Enhanced adsorptive desulfurization using Mongolian anthracite-based activated carbon", ACS omega, vol. 4, no. 24, pp. 20844–20853, 2019.
[36] P. Sikarwar, U. K. A. Kumar, V. Gosu, V. Subbaramaiah, "Synergetic effect of cobalt-incorporated acid-activated GAC for adsorptive desulfurization of dbt under mild conditions", J. Chem. Eng. Data, vol. 63, no. 8, pp. 2975–2985, 2018.
[37] T. A. Saleh, K. O. Sulaiman, S. A. Al-Hammadi, H. Dafalla, G. I. Danmaliki, "Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: with column system evaluation", J. Clean. Prod., vol. 154, pp. 401–412, 2017.
[38] S. K. Thaligari, V. C. Srivastava, B. Prasad, "Adsorptive desulfurization by zinc-impregnated activated carbon: characterization, kinetics, isotherms, and thermodynamic modeling", Clean Technol. Environ. Policy, vol. 18, no. 4, pp. 1021–1030, 2016.
[39] G. I. Danmaliki, T. A. Saleh, A. A. Shamsuddeen, "Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon", Chem. Eng. J., vol. 313, pp. 993–1003, 2017.
[40] A. J. Hernández-Maldonado, S. D. Stamatis, R. T. Yang, A. Z. He, W. Cannella, "New sorbents for desulfurization of diesel fuels via π complexation: layered beds and regeneration", Ind. Eng. Chem. Res., vol. 43, no. 3, pp. 769–776, 2004.
[41] S. Mikhail, T. Zaki, L. Khalil, "Desulfurization by an economically adsorption technique", Appl. Catal. A Gen., vol. 227, no. 1–2, pp. 265–278, 2002.